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Various sampling techniques are widely used in environmental, social and resource surveys. Spatial
sampling techniques are more efficient than conventional sampling when surveying spatially distributed
targets such as CO2 emissions, soil pollution, a population distribution, disaster distribution, and disease
incidence, where spatial autocorrelation and heterogeneity are prevalent. However, despite decades of
development in theory and practice, there are few computer programs for spatial sampling. We inves-
tigated the three-fold relationship between targets, sampling strategies and statistical methods in spatial
contexture. Accordingly, the information flow of the spatial sampling process was reconstructed and
optimized. SSSampling, a computer program for design-based spatial sampling, has been developed from
the theoretical basis. Three typical applications of the software, namely sampling design, optimal
statistical inference and precision assessment, are demonstrated as case studies.

� 2012 Elsevier Ltd. All rights reserved.
Software availability

Name: SSSampling
Hardware requirement: Windows-compatible PC
Program language: Visual Cþþ
License type: free
Availability information: http://www.sssampling.org
1. Introduction

Spatial sampling and statistical inference are becoming funda-
mental elements of surveys in broad physical and social disciplines,
including surveys of soil (Webster, 1985), ecology (Müller et al.,
2012), atmospheric pollutants (Pozo et al., 2006), population
health (Kumar, 2007), remote sensing (Stein et al., 1999), etc. Spatial
sampling uses a smaller sample to make a more precise estimation
relative to conventional sampling (Cochran, 1977), by taking spatial
autocorrelation (Haining, 2003) and spatial heterogeneity (Wang
et al., 2009, 2010) into account. In the next decade or so, we
should see great advances in real-time environmental monitoring
technologies. Spatial sampling techniques are crucial in this regard,
particularly with respect to the design of monitoring networks,
All rights reserved.
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making inferences based on the observed sample, and assessing the
posterior precision of the estimate. Compared with exhaustive
surveys, sampling techniques have the advantage of being quicker,
cheaper, and more precise (Cochran, 1977). Given a limited budget
for a survey, higher precision can be attained by locating people
who are more experienced and using specific instruments at
appropriate sampling sites, rather than having people who are less
experienced and inadequate instruments at all sites.

Sampling techniques evolved centuries ago fromprobability and
statistics. In recent decades, characteristics of spatially referenced
phenomena have been recognized and they have stimulated the
development of spatial statistics and sampling methodology. There
is a vast literature on spatial sampling techniques, which can be
roughly divided as design based (e.g., Cochran, 1946; Rodriguez-
Iturbe and Mejia, 1974; Bellhouse, 1977; Matérn, 1986; Haining,
1988; de Gruijter and Ter Braak, 1990; Overton and Stehman,
1993; Opsomer and Nusser, 1999; Stein and Ettema, 2003;
Stevens and Olsen, 2004; Rogerson et al., 2004; Gallego, 2005; de
Gruijter et al., 2006; Lister and Scott, 2008; Wang et al., 2010),
model based (e.g., Olea,1984; Cressie, 1991; Christakos,1992; Olken
and Rotem, 1995; Caeiro et al., 2003; Wang et al., 2009; Hu and
Wang, 2011; Spöck, 2012), and both (for example, Griffith, 2005).
The choice of the distinct approaches should be based on the
objective of the survey (Haining, 2003; de Gruijter and Ter Braak,
1990). The model-based approach acknowledges that the
observed population is one realization of a probability process and
sampling: Theory and implementation, Environmental Modelling &
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aims at estimating the parameters underpinning the process, or
a superpopulation; the design-based approach acknowledges that
the value is fixed at each sampling location and aims at estimating
the observed (here and now) population using a sample. A practical
guide to distinguish a population and superpopulation is as follows.
If users want an enumerated survey result then a sampling to this
end relates to a population; if an enumerated survey was only one
realization of a process then a sampling to estimate the process
relates to a superpopulation. For example, birth defects are low-
probability events, and a cross-sectional survey over an area
relates to the population, which can be estimated using a design-
based approach; i.e., conventional sampling (Cochran, 1977). In
contrast, a long-term time series of the spatial distribution of
a disease is a superpopulation of the disease, which can be esti-
mated using a model-based approach with some assumptions of
the spatiotemporal process of the birth defects or be estimated
using a design-based approach with a long-term cohort survey.
Although there has been great progress in the development of
spatial sampling theories, there is little open computer software for
spatial sampling (Spöck, 2012), because prior knowledge, spatial
autocorrelation, and spatial heterogeneity are not easily imple-
mentable in software. Thus, developing software for this purpose is
seen solution way to promote the use of these sophisticated
techniques.

In this study, we develop software for design-based spatial
sampling. We clarify the tasks involved in spatial sampling in the
real world and review existing software in Section 2. In Section 3,
we summarize the mechanics of spatial sampling. Accordingly, in
Section 4, we design a computer program for design-based spatial
sampling. In Section 5, we demonstrate three typical applications of
the software, namely distributing a sample optimally over space;
making an optimal inference using an existing sample; and
assessing the precision of an existing statistical report. Finally,
conclusions are drawn in Section 6.
2. Sampling surveys in the real world and existing software

An example of a question that arises during sampling in the real
world is as follows. To achieve relative error less than 20%, how
many villages, and which villages, should be drawn from the 326
villages in a county to estimate the proportion of birth defects in
live births? Its dual question is, given a budget for the survey or
a cap on the number of villages, which villages should be drawn
from the 326 villages and how precise can the estimate be?

The key idea of a spatial sampling method is to infer the prop-
erties of a population using a sample that is distributed over space
using a suitable statistic. The resulting estimate of a population
could be its total, mean value (Haining, 2003; Griffith, 2005; Wang
et al., 2009), values at unsampled sites (Spöck, 2012) or spatial
maxima (Rogerson, 2005), spatial patterns (Dungan et al., 2002),
statistical hypotheses (Stein and Ettema, 2003), semi-variograms,
or the precision together with its confidence interval of the esti-
mates. The theory of spatial sampling addresses the following dual
tasks.

� For a given precision, with the confidence interval of the esti-
mate, project the number of sample units or the budget of the
survey to meet the precision requested. This is conditional
upon the properties of the target domains and prior informa-
tion available.

� For a given number of sample units or the budget of a survey,
forecast the precision of an estimate and its confidence
interval. Again, this is conditional upon the properties of the
target domains and prior information available.
Please cite this article in press as: Wang, J.-F., et al., Design-based spatial
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Although a wide range of sampling techniques have been
developed (Cochran, 1977; Li et al., 2005), it is almost the case that
only random sampling is implemented in open computer packages
(Lwange and Lemeshow, 1991). For instance, G*Power, Macorr,
PASS, Raosoft, and nQuery Advisor are sampling packages that deal
with issues such as power values for given sample sizes, effect sizes,
and alpha levels (post hoc power analyses); sample sizes for given
effect sizes, alpha levels, and power values (a priori power anal-
yses); and alpha and beta values for given sample sizes, effect sizes,
and beta/alpha ratios (compromise power analyses). Spöck (2012)
recently developed spatial sampling software based on a spectral
model to reduce kriging variance.

Spatial autocorrelation and heterogeneity, usually inherent in
spatial data, can seriously impede the efficiency of conventional
sampling techniques (Cochran, 1977; Haining, 1988; Griffith, 2005)
and should therefore be implemented in spatial sampling software
(e.g., van Groenigen and van Stein, 2000). In addition, mapping is
a necessary function in a package handling spatial data. The soft-
ware SPSS allows users to choose a sample from a given population
framework, randomly, systematically or in a stratified manner. The
sampling handbook of the World Health Organization (Lwange and
Lemeshow, 1991) greatly facilitates field surveys by epidemiolo-
gists. However, spatial autocorrelation and spatial stratification are
difficult to account for in conventional sampling (Cochran, 1977), if
not impossible. Flexibility, robustness, and a user-friendly interface
are critical qualities needed for the success of a sophisticated
package. We consider all of the above requirements in developing
our geographical information system (GIS)-based and design-based
spatial sampling and statistic software, SSSampling, an open and
freely downloadable package (www.sssampling.org).

3. Mechanics of spatial sampling

Spatial sampling is to sample a target population, which
involves drawing a number of sample units from the geographically
distributed target, and then using the sample to infer the properties
of the target. The performance of a sampling survey is measured by
both the variance (v) of the sample estimate and the number (n) of
sample units used, denoted as (v, n). More intense sampling gives
a better reconstruction of the variable of interest, but is expensive,
time-consuming and sometimes redundant. Conversely, although
sparse sampling is cheap, it may miss important features. A good
sampling survey has a small variance of the estimate using a small
sample, considering the budget for sampling or required precision
of the estimate.

3.1. Trinity relationship among the target domain, sampling frame
and statistics

The performance of a sampling (v, n) is controlled by the trinity
relationship <, J, J of the target domain with its features <,
geographical distribution of a sample J, and the statistical method
J (i.e., the model used to calculate the mean and variance of
samples) (Wang et al. 2010). The target domain < may or may not
be identical to the study area U. For example, in surveying the
human population in China, the country is the study area U, while
the places that humans inhabit makes up the target domain <. In
another example of mapping or estimating the annual mean air
temperature in China, the whole geographical territory of the
country is the study area U and is identical to the target domain <
because the target < covers the whole country U. The features of
a target domain < could be identified independent distribution or
i.i.d., dispersion variance, spatial autocorrelation, spatial hetero-
geneity, trend, and periodicity; sampling J ¼ random sampling,
systematic sampling, and stratified sampling; statisticJ ¼ random
sampling: Theory and implementation, Environmental Modelling &
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or spatial random statistic, systematic or spatial systematic statistic,
and stratified or spatial stratified statistic, where the term ‘spatial
random statistic’ refers to a random statistic considering spatial
autocorrelation. The element(s) of the sampling trinity may be
modified if sites of the target domain < have different importance
(Rogerson et al. 2004) or sample units J have various sizes (Journel
and Huijbregts, 1978), and these will be transferred into sampling
practice through the sampling trinity (<, J, J). For example,
a seismic surveillance network should be much denser in
population-dense areas, rather than being distributed purely
considering the physical activity of the local crust.

Small variance and a lack of unbiased are pursued in a spatial
sampling and estimation by optimizing the sampling trinity rela-
tionship. For example, for a stratified target domain (< ¼ spatial
heterogeneity), applying stratified sampling (J ¼ stratified
sampling) and then using a stratified statistic (J ¼ stratified
statistic) will result in a sample estimate with small variance
(Cochran, 1977; Wang et al., 2010). i.i.d. <, any sampling J and
statistic J will result in an unbiased estimate (Cochran, 1977); for
a stratified target domain <, a random sampling J with random
statistic J will still result in an unbiased estimate (Horvitz and
Thompson, 1952) but its variance can be reduced if stratified
sampling J and/or stratified statistic J were employed; for
a stratified target domain< and a sample J biased with respect to<
(a sample not randomly drawn from the target domain), employing
a random statisticJwill result in a biased estimate but the sample
bias J may be remedied and an unbiased estimate reached using
specific statisticsJ (Heckman, 1979; Wang et al., 2011); a sample J

biased with respect to the target domain < cannot result in a biased
estimate under a simple random statistic J. A random statistic (J)
of the human population may be biased if the locations of the
sample (J) are chosen randomly across a territory in a manner that
is inconsistent with the geographical distribution of the target
population (<) (Schwanghart et al., 2008). The bias estimate arises
from the spatial heterogeneity of the surveyed population <,
a sample J random to the territory but nonrandom to the
geographical distribution of target human population, and
a random statistic J; an estimate can be unbiased either using
a sample J drawn randomly for the geographical distribution of
human density (target domain <) with a random statistic J, or
using a sample J drawn randomly for the territory (study area U)
but followed by the use of a statistic J weighted by population.

Although Cochran (1946) and Haining (1988) explicitly consid-
ered spatial autocorrelation and the probability distribution of the
target domain in deducing spatial sampling models, there have
been few systematic studies on the role of the various heteroge-
neities of surfaces in sampling design. This is despite target domain
characteristics seriously affecting the efficiency of sampling design
and statistical inference (Lin et al., 2008; Wang et al., 2010).

3.2. Multi-unit reporting problem

Often, there is a need to simultaneously estimate the values of
an attribute in multiple reporting units (i.e., domains (Sarndal et al.,
1992) or subpopulations (Cochran, 1977)) in the existing literature.
We use the term ‘reporting units’ here because it is easily under-
stood. For instance, central government may want to know the
current population size in each of the 2700 counties in China, or the
organism concentration in soil in each cell of a fine-grid system. In
both instances, an estimate can be obtained under the condition
that at least two sample units are drawn in each of the many
reporting units, according to design-based framework. Therefore,
the total cost of the survey is proportional to the number of
reporting units, and the survey would be expensive when there are
many reporting units. Alternatively, a model-based approach such
Please cite this article in press as: Wang, J.-F., et al., Design-based spatial
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as kriging can make a projection but fails if the surfaces are strat-
ified non-homogeneously, which is often the case in the real world
(Goodchild and Haining, 2004).

A design-based statistic called the sandwich statistic has been
developed for the areal interpolation of a heterogeneously strati-
fied surface (Wang et al. 2002), where the reporting units and
target domain are completely independent of each other, and are
viewed as two totally separate layers. The reporting layer could be
a census system, physical units such as watersheds, or an artificial
delimited grid system. This layer is subjectively defined. Stratified
heterogeneous surfaces can be reflected by zonation constructed
from prior knowledge of the area or physical laws (Wang et al.,
1997, 2010). Stratified sampling is conducted over the zonation
layer. In this way, the sample size is completely independent of the
number of reporting units. An information propagation function
chain has been established to model the propagation of informa-
tion from the target domain layer, to the zonation layer, to the
sample layer and finally to the reporting unit layer. This is accom-
panied by a propagation of uncertainty of the estimate (Wang et al.
2002).

The advantage of the sandwich statistic can be readily under-
stood in an extreme situation: a target domain is perfectly stratified
into several flat patches, a number of grid units over the surface
have to be reported, and the number of strata of the target domain
is much less than the number of reporting units. In this case,
stratified sampling in a small area relative to the zoned target
surface will be sufficient to estimate the mean value and variance
for each of the zones. The information is then transferred by the
sandwich model onto each of the multi reporting units with high
precision, while in conventional design-based approaches, each of
the reporting cells has to contain at least two sampling points
(Cochran, 1977; Sarndal et al., 1992; Rao, 2003) and a large sample
has to be drawn for multi-unit reporting. Sandwich sampling
reduces to stratified sampling if there is only one reporting unit,
and the efficiency of the sandwich reduces if surfaces are stratified
less heterogeneously.

3.3. Prior knowledge and implementation

The uncertainty of a spatial sampling estimate is proportional to
the gap between the human recognized features of the target
domain and the real features of the target domain (Wang et al.,
2010; Bueso et al., 2005). Prior knowledge of the target domain
can dramatically reduce the uncertainty in the sampling estimate.
No structure can be detected if the structure is smaller than the
interval between sampling units or larger than the extent of the
study (Dungan et al., 2002), and efficient sampling should thus
consider prior knowledge.

The spatial features of a target domain that affect the efficiency
of the sampling estimate are dispersion variance (Cochran, 1977)
(the variance within a population, not the variance of a sample
mean), spatial autocorrelation (Cochran, 1946; Rodriguez-Iturbe
and Mejia, 1974; Haining, 1988; Griffith, 2005), and spatial
heterogeneity (Wang et al., 1997). Knowledge of these population
properties could be in the form of maps, semi-variograms, zona-
tions, or even stochastic field models (e.g., SAR, MAR, CAR) (Fischer
andWang, 2011) and physical laws (Christakos, 2010). Additionally,
process models (Christakos, 1992; Paola et al., 2006) can potentially
be integrated into the sampling model to allow the two disciplines
of sampling modeling and process modeling to add value to one
another (Sarndal et al., 1992).

Prior knowledge contributes to sampling design in three ways.
The first is that the target domain features determine the optimal
sample geographical distribution and choice of statistic, according
to the trinity relationship <, J, J described in Section 3.1. The
sampling: Theory and implementation, Environmental Modelling &



J.-F. Wang et al. / Environmental Modelling & Software xxx (2012) 1e94
second is that prior knowledge of the target domain is beneficial in
delimiting the stratum for sampling and statistics so as to improve
the efficiency of sampling. Finally, known and unknown target
domain features lead to different choices in sampling methods. For
instance, we can only choose simple random or systematic
sampling if we know nothing about the target domain, although
this is at the risk of low sampling efficiency when the target domain
has heterogeneous stratification. Alternatively, we can use spatial
stratified sampling and statistics if we know the dispersion vari-
ance, spatial heterogeneity and spatial autocorrelation of the target
domain, which will be accompanied by a lesser loss of precision of
the estimate. Therefore, knowledge of the target domain is devel-
oped as an independent module (Li et al., 2008), which formulates
the prior information relevant to spatial sampling (Wang et al.,
2002).

Prior knowledge can be obtained from general knowledge of
physical or human processes; from previous surveys or expert
knowledge in the same or similar areas; or from observed deter-
minants of the target domain. The prior knowledge is either
transformed into strata on a map by a classification algorithm and
then drawn by GIS mapping or transformed into strata on a map by
hand using the synthetic and qualitative knowledge of experts.
Several specific cases are considered as follows. (1) If there is
neither historical data about the surface nor prior knowledge or
experience available for zoning, administrative units or physical
units are sometimes used as zones for sampling. No specialist
computation is required. This sampling suffers from low efficiency
if the region has different geophysical, geographical or socioeco-
nomic environments. (2) If detailed data are not available but there
is relevant prior knowledge or experience, the prior knowledge or
experiencemay be sufficient to produce useful zoning, drawn up by
a panel of experts. For example epidemiologists may be able to
suggest ways of partitioning a city or region into areas with similar
health risks, on the basis of their work experience and knowledge
of race, occupation, income, age, and environment of a residential
area. (3) If we have relevant data (e.g., in the form of a pilot survey
or historical data) but uncertain contemporary expert knowledge,
k-means or shared-nearest-neighbor clustering can be used to
construct the zones when sufficient data are available covering the
area. The quality of any zoning is usually improved by integrating
diverse sources of information (Wang et al., 2010; Li et al., 2008). (4)
If we have both relevant good-quality data and expert prior
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knowledge then the zoning will reflect the output of the classifi-
cation algorithm modified or endorsed by the insights of field
experts. Semi-supervisedmethods (Li et al., 2008) use decision-tree
or rough-set rules to allow the output from a formal algorithm to be
adjusted by engaging with experts. The significance of the strati-
fication of a target domain can be detected by the geographical
detector (www.sssampling.org/geogdetector).
3.4. Sensitivity analysis of the specification of strata

Four surfaces from completely random (A) to perfectly strat-
ified (D) are illustrated in Fig. 1a and denoted on the oblique axis
in Fig. 1b. Samplers demarcate the surfaces to represent the real
stratification according to the sampler’s knowledge of the target
domain. The bias between the real stratification of the target
domain and the sampler’s zonation is indicated by the horizontal
axis of Fig. 1b, where a value of zero denotes perfect coincidence
of the two strata; the bias increases from 0 to 90; 90 denotes that
the zonation completely fails to reflect the real stratification of
the target domain. The vertical axis in Fig. 1b denotes the error in
the sample mean, which changes with stratification of the target
domain and the bias between the stratification of the target
domain and the zonation for sampling for a given sample size.
The sensitivity simulation shows that (1) the sampling efficiency
increases (error reduces from 0.025 to 0 along the vertical axis in
Fig. 1b) with an increase in the spatially stratified heterogeneity
of the target domain (from target domain A to D on the oblique
axis in Fig. 1b) and with a reduction in the bias between the
sampling zonation and the true stratum of the target domain
(from 90 to 0 along the horizontal axis in Fig. 1b); (2) stratified
sampling loses efficiency and is no different from simple random
sampling if the target domain is completely random (see target
domain A in Fig. 1b); and (3) stratified sampling obtains a sample
estimate with very small error if the target surface is perfectly
stratified (surface D) and is well reflected by the sampler’s
zonation (the bias is zero). Samplers would have no choice but to
carry out random sampling if there is no knowledge of the real
target domain no matter whether the domain was random of
stratified. Therefore, samplers should take every effort to collect
prior knowledge to approximate the stratification of the target
domain.
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3.5. Information flow of spatial sampling strategies

If users have no prior knowledge of the target domain <, sample
units have to be distributed randomly or systematically J over the
target domain < (Fig. 2); e.g., see the simple random sampling in
case study 1 in Section 5.2. Alternatively, if information on the
features of the target domain < is available, users can sample
randomly for a random or trend surface, or sample systematically
for a random target domain or systematic target domain, or use
stratified sampling for a heterogeneous (stratified) or trend target
domain (see the dark solid arrows from sampling J to target
domain < in Fig. 2). An example is the spatial stratified sampling in
case study 1 in Section 5.2. No matter whether the users know the
target domain <, users can explore the features of the target
domain after sampling using the sample data acquired (see the box
between target domain < and statistic J) and choose the optimal
statistic that most closely fits the target domain features (see the
solid dark arrows from < to J in Fig. 2) according to the sampling
trinity theory (refer to Section 3.1), irrespective of how the sample
was already distributed over space (see the distribution of sample
units J in Fig. 2). Case study 2 in Section 5.2 is an example of the
posterior stratification strategy. Possible non-correspondence
between the statistical model J and the distribution of sample
units Jmay arise when users do not know the features of the target
domain < before sampling J and thus have to choose random or
systematic sampling. This posterior exploratory data analysis after
sampling J can identify features of the target domains that can be
used to improve the subsequent statistics. For statistic J in Fig. 2,
the term ‘spatial random’ refers to a random statistic considering
spatial autocorrelation (Haining, 2003), and the terms ‘spatial
systematic’ and ‘spatial stratified’ have corresponding meanings.
Fig. 2. Information flow in spatial sampling (the solid arrows are the optimal choices of sam
optimal statistics, and can be avoided once the sample data have been acquired and the su
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The gray lines in the figure are not recommended selections
because the spatial autocorrelation existing in target domain < is
not accounted for by statistic J and the sampling would be
inefficient.

Uncertainty in the final sample estimation inevitably arises and
propagates through the whole process, from the very beginning of
sampling to the final sample statistic. The causes of this uncertainty
are varied, and include uncertainty in an individual sample unit,
target domain random features of spatial autocorrelation and
heterogeneity, intrinsic uncertainty in sampling due to not
enumerating the population, bias between the real stratum of the
actual target domain and the sampling stratum due to incomplete
human knowledge or physical inaccessibility of some sites, bias
between the real stratum of the actual target domain and the
statistical stratum, and the fact that statistical models are not
perfect. There is a good chance of high uncertainty in the sample
estimation if we do not have prior knowledge of target domain <
(see the right-hand side of the judgment diamond in Fig. 2). In this
case, we can only use random or systematic sampling, and the
estimate would differ greatly from the real target domain if the
target domain was strongly heterogeneous or stratified, and
consequently result in a significant loss of efficiency of the
sampling.

4. SSSampling

We have developed a computer software package called
SSSampling (Sandwich Spatial Sampling and Inference Software)
that implements spatial sampling procedures. It has functions for
the identification of a study area U, for the distribution of sample
units J over a target domain <, and for statistical inferenceJ using
pling J and statistic J most suited to the surface features <; the gray solid lines are not
rface features have been explored using the sample data).

sampling: Theory and implementation, Environmental Modelling &
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the sample, and GIS functions providing a platform for I/O and
management of the spatial data. The SSSampling website is www.
sssampling.org.

The SSSampling infrastructure is based on sampling trinity
theory and supports three processes. The first of these is sampling
design (< / J / J). The second is statistical inference (J / J),
which considers the target surface properties < and sampling
distributions J, which are not necessarily consistent with the
distribution of the sample as implied in conventional sampling
techniques (Cochran, 1977; Kreyszig, 1999). The inconsistency
between the sample distribution J and statistic J allows
improved estimation after the sample has been collected. For
example, users have no alternative but to distribute samples
randomly over target domain < if there is no prior knowledge of
the target domain <. However, the target domain < may be found
to be spatially stratified by exploration of the collected sample,
and a stratified statistic instead of a random statistic should then
be used to estimate the sample mean and its variance. The third
process assesses the precision of a reported statistic (J) by
investigating the properties of the target surface <, the distribu-
tion of the sample J and the statistic J used to calculate the re-
ported quantity. SSSampling provides the following options (ref.
www.sssampling.org).

� Sampling with prior or posterior precision. The option allows
the user to estimate the size of a sample or the precision of
a sample estimate prior to sampling, or to make a statistical
inference J for an existing sample J.

� Precision of estimate or size of sample. The option allows the
user to estimate the precision and confidence level of the
estimate given the number of sample units, or to estimate the
number of sample units required to meet a pre-specified
precision and confidence level for an estimate.

� Sampling design. The option allows the user to distribute
a sample randomly, systematically, or in a stratified manner on
a map.

� Statistical method for estimation. Example options include
simple random, spatial random, spatial stratified, and spatial
sandwich mapping.

� Zonation. Spatial heterogeneity is prevalent in geo-
phenomena, and is usually reflected by zonation. Two
methods for zonation are provided in SSSampling: k-means
clustering if users have relevant datawhile currently there is no
direct way to specify the number of zones, and manual coding
if the prior knowledge is categorical.

� Intelligent parameter setting. Users who are unfamiliar with
sampling theory sometimes have difficulty in choosing
a sampling procedure. SSSampling provides a user interface
that allows users to enter their parameters, and the software
then finds a model(s) that matches the given parameters.
Please cite this article in press as: Wang, J.-F., et al., Design-based spatial
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5. Case studies

5.1. Case study 1: optimal design for a sampling plan

To design a monitoring network or field sampling survey, we
need to calculate the optimal sample size or prior precision of the
sample estimate.

(1) Aim. To design a sampling plan to survey the area of cultivated
land in the Shandong Province.

(2) Data. The province is divided into 39,223 cells, each having
dimensions of 2 km � 2 km; the area of cultivated land within
a cell is taken as the sampling unit. The province is stratified into
seven strata, according to the principle of minimizing the vari-
ance of the attribute within each stratum, and maximizing the
variance between strata. In this study, the stratification was
drawn by a panel of experts on land use to delimit the province
into areas with a homogeneous proportion of cultivated area
per cell, according to determinants of land use such as elevation,
climate zone, and cultivation culture in the province (Fig. 3).

(3) Two sampling plans. We conducted both simple random
sampling (Cochran, 1977, p. 18) and spatial stratified sampling
(Wang et al., 2002) by drawing 160 sample units in each case.
Fig. 4 shows a user interface of SSSampling. The B function
shown in Fig. 4 is one of the groups of input parameters.

(4) Conclusion. Table 1 presents the averaged area and its relative
errors of cultivated land in each of the cells, as estimated by
each of the two sampling plans. The interval of the sample
mean acquired from the spatial stratified sampling is narrower
than that of the simple random sampling. Additionally,
according to the relative errors, the spatial stratified sampling
has greater precision than the simple random sampling.

5.2. Case study 2: improving inference given an existing sample

For an existing monitoring network or sample dataset, such as
an existing weather observation network or epidemic surveillance
network, we need to recommend the best statistic or suggest
improvements to the monitoring network.

(1) Aim. To improve the estimates of the existing national weather
observation network.

(2) Data. Given a distribution of 720 national meteorological
stations in China and the mean annual temperature for each of
the stations averaged over the period 1991e2000, we need to
estimate the mean annual temperature for the whole country.
A simple random statistic adds all sample values together and
then divides by the number of sample units (in this case, 720).
This estimate can, however, be improved using a spatial
stratified statistic.
sampling: Theory and implementation, Environmental Modelling &
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Fig. 4. Parameter settings and calculation of the estimate precision in spatial stratified sampling.

Table 1
Means and errors of two sampling schemes.

Sampling models Sample mean 95% confidence of sample mean Relative errors ¼ (1/true mean) �
(true mean � sample mean)

Low Upper

Simple random sampling 0.700 0.660 0.740 0.070
Spatial stratified sampling 0.700 0.690 0.700 0.050

Note: the true mean is for all 39,223 cells of the population.
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(3) Spatial stratified statistic (Wang et al., 2002). Annual temper-
ature is obviously affected by elevation. We use SRTM DEM
data with spatial resolution of 90 m � 90 m to stratify the
country into nine strata, according to the principle of mini-
mizing the dispersion variance of the annual temperature
within each stratum andmaximizing the values between strata
(see Fig. 5). We then calculate the mean annual temperature
using stratified statistics.
Fig. 5. Improving estimates based on data reco
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(4) Conclusion. The spatial stratified statistic gives a smaller
standard variance of the sample mean (0.21) than the simple
random statistic (0.26). Thus, the stratified statistic is more
accurate than the simple random statistic for estimation of the
annual average temperature in China. This also means that,
given the precision of the estimate, a smaller number of sample
units (meteorological stations) are needed if a much more
advanced statistic is employed.
rded by existing meteorological stations.
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Fig. 6. Assessment of the precision of a reported residential satisfaction survey in 2005.
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5.3. Case study 3: evaluation of the precision of a statistic report

Given a published statistic, such as regional greenhouse gas
emissions, prevalence of a disease in a region, or the amount of
contaminated soil in a region, we need to evaluate its precision.

(1) Aim. To assess the precision of a published report.
(2) Data. 3797 people were randomly drawn from 7,848,000 citi-

zens in eight core districts of Beijing in 2004 (see Fig. 6) and
asked to give their residential satisfaction as a score between
0 and 100. The reported mean of the survey was 65.9 (Zhang
et al., 2006) while the standard variance of the sample mean
using simple random sampling was 0.197.

(3) Assessment of the precision of the reported value. In 2000, an
enumerate survey of the population was conducted in Beijing.
The size of the population in each of the statistical units is seen,
to some extent, as a proxy variable of the citizens’ expression of
their residential satisfaction, and is thus used to stratify the city
into four strata (see Fig. 6). The sample mean and its standard
variance using the spatial stratified statistic (Wang et al., 2002)
are estimated as 65.9 and 0.156, respectively.

(4) Conclusion. The mean residential satisfaction of the citizens in
Beijing in 2005 is 65.9 � 0.156 � 1.96 ¼ 65.9 � 0.3 with 95%
confidence.

6. Conclusions and discussion

We have developed the SSSampling computer program to
facilitate design-based spatial sampling design and statistical
inference. SSSampling can be used for prior sampling design before
field work, and posterior precision assessment in sample estima-
tion. The prominent features of SSSampling are summarized as
follows. (1) According to the trinity relationship between the target
domain (<), sampling (J) and statistical inference (j) (Fig. 1), the
software distributes a sample optimally over space, then makes
optimal inferences using the sample collected, and assesses the
precision of an existing statistical report. (2) The sandwich frame-
work of a target domain (<), intelligent layer (J) and reporting layer
(j) is able to integrate various forms of prior knowledge, enable
multi-unit reporting and facilitate operation in GIS environments
because of the shared concept of layers. (3) The zonation module,
an intelligent engine used to formalize prior knowledge from
diverse sources, is used to sample spatially stratified heterogeneous
target domains, given the different prior information available
(Huang et al., 2006; Li et al., 2008). (4) Intelligent setting of
parameters for various models is supported.

The inferential framework invoked throughout (Cochran,
1977; Sarndal et al., 1992) is design-based inference, in which
repeated and random sampling is employed to obtain an
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estimate of the population, to approximate the population
without bias (de Gruijter and Ter Braak, 1990). Model-based
inference, in which an observation is regarded as one realiza-
tion of an underlying mechanism with some probability distri-
bution, is the other major inference framework (more the focus
in Cressie’s book). Obviously, the two inference frameworks have
different objectives, bias, variance, and ‘optimality’ criteria.
Model-based inference is appropriate for the projection of
parameters of a superpopulation or over a cross section space,
while the design-based approach is more appropriate for “here
and now” statistics, and is also applicable to a superpopulation
when the observation is long enough to reflect its underlining
process. Some estimation objectives are addressed best by an
inference framework (e.g., estimating a mean, total or propor-
tion), and others are strongly associated with the model-based
framework (e.g., estimating a variogram, predicting values at
unsampled locations, estimating a maximum, or estimating
a spatial pattern). For example, birth defects in a population are
low-probability events in villages of Heshun County, with around
0e10 cases from 0 to 150 live births annually (Gu et al., 2007).
However, observations are only available for a few years. A
design-based approach reflects new occurrences of the disease
in the observed period, and thus denotes the amount of
healthcare resources that should be allocated to handle the
disease burden in the period. Alternatively, the model-based
approach reflects the baseline level and the risk of the disease
in the long-term, and as such, would suggest healthcare
resources should be reserved for the county to handle the
potential long-term burden. The model-based incidence should
be taken as the response variable if one wants to model the
disease and its determinants. A model-based approach has to be
employed for spatial interpolation because spatial interpolation
usually has to be based on an assumption of the probability
process. If the observations are long-term or large enough so
that a design-based estimate of incidence is reliable, the design-
based incidence gives a proper indication of the risk of the
disease in the area.

The SSSampling program has been designed so that alternate
and future advances in spatial sampling and spatial statistics can
be easily implemented. Example techniques include wavelet
sampling (Atkinson and Emery, 1999), high-dimension and
oscillatory surface modeling (Benedetto et al., 2001), model-
assisted survey sampling (Sarndal et al., 1992), inverse kriging to
distribute the sample (Spöck, 2012) such that the mean error or
maximum error of prediction at unsampled sites is minimize,
importance sampling (Rogerson, 2005), and a module for the
uncertainty of an individual sample unit. The infrastructure of the
software can also be revised to adopt new state-of-art software
techniques.
sampling: Theory and implementation, Environmental Modelling &
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Further reading

nQuery Advisor (http://www.statsol.ie/nquery/demo/index.html)
PASS (http://www.ncss.com/pass.html)
G*Power (http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/)
Sample size calculator/The Survey System (http://www.surveysystem.com/sscalc.

htm)
Sample size calculator/Macorr (http://www.macorr.com/ss_calculator.htm)
Sample size calculator/Raosoft (http://www.raosoft.com/samplesize.html)
Matlab (http://www.mathworks.com/)
SPSS (http://www.spss.com/spss/)
GeoDA (https://www.geoda.uiuc.edu)
GeoBUG (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/geobugs.shtml)
Crimestat (http://www.icpsr.umich.edu/CRIMESTAT/)
SatScan (http://www.satscan.org/)
SSSampling (www.sssampling.org) design-based spatial sampling software
MSN (www.sssampling.org/MSN): model-based spatial sampling software
B-shade (www.sssampling.org/B-shade): software to remedy biased sampling
Geographical detector (www.sssampling.org/geogdetector): software to detect

spatial stratification and health risk
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